TECH**brief**

The Structures research and technology program aims to foster increased durability of new bridges and observable increases in the service life of existing structures, placing an emphasis on increasing highway safety while preserving the environment. The program focuses on researching nondestructive evaluation technologies to identify structural deficiencies and support bridge management systems. It also uses high-performance materials to repair and rehabilitate the existing inventory of deficient bridges. This find it and fix it program is supplemented by research which examines all aspects of bridges and foundations, including planning, design, construction, management, maintenance, inspection, and demolition.

Specific expertise areas include bridge coatings, bridge infrastructure, bridge management, nondestructive evaluation, corrosion protection, foundations, scour, geotechnical research, high-performance materials, aerodynamics, seismic research, and structures instrumentation.

U.S. Department of Transportation Federal Highway Administration

Research, Development, and Technology

Turner-Fairbank Highway Research Center

6300 Georgetown Pike McLean, VA 22101-2296

Durability of Geosynthetics for

Highway Applications

Report Nos. FHWA-RD-97-142, 97-143, 97-144, and 00-157 FHWA Contact: AI DiMillio, HRDI-08, (202) 493-3035

Introduction

The research results described herein are included in four volumes on the subject of Durability of Geosynthetics for Highway Applications. Various aspects of geosynthetic durability were addressed in order to develop procedures that could be used to predict long-term strength losses of geosynthetics used in highway applications. This information is essential to designers for allowing tensile capacity for geosynthetics used primarily in mechanically stabilized earth (MSE) retaining walls, reinforced soil slopes, and foundation stabilization.

The study was conducted in stages, each stage building on the knowledge previously gained. The main objectives addressed were to: (1) develop testing protocols necessary to quantify any strength reduction due to aging or stress (stress cracking only) mechanisms for polymeric reinforcement materials (geosynthetics), and (2) develop testing protocols for confined stress-strain testing, which could more accurately characterize key engineering properties.

The results of the experimental tasks are discussed on the following pages.

Stress Cracking Potential of HDPE Geogrids

(Report No. FHWA-RD-97-142)

Overview

This study was initiated to allay voiced concerns (in 1991) that stress-cracking potential was not being considered in developing the allowable tension load capacity for design when using high-density polyethylene (HDPE) geogrids.

Stress cracking is a potential mode of failure occurring in thermoplastic materials that are under a sustained stress significantly lower than the material's room temperature yield strength, resulting in quasi-brittle fracture of the material. This is also known as slow crack growth and environmental stress cracking (ESC) when in contact with certain aqueous solutions.

The extensive laboratory study developed testing and interpretation protocols to measure the potential for stress cracking for intact and damaged HDPE geogrids.

Major Conclusions

The detailed laboratory results and analyses demonstrated that for the one presently available commercial HDPE geogrid:

 Stress cracking is a potential failure mode for HDPE uniaxially drawn geogrids at their nodes only, which are not highly drawn. Rib areas, which are highly drawn, are not prone to stress cracking.

- Stress cracking is a less stringent or equal consideration than creep rupture in developing allowable tensile capacity for *intact* geogrids.
- Testing protocol for *damaged* geogrids using a Notched Constant Testing Load (NCTL) procedure was developed, since the reduced stress crack-derived allowable tensile capacity may be lower than projected, simply by applying a construction damage reduction factor.
- Damage to the geogrid can be significantly limited by using a backfill with a maximum grain size on the order of 20 mm to limit damage to levels that are not likely to significantly initiate stress-cracking failures at lower levels than those indicated by creep testing.

Further Actions Recommended

- The results and engineering recommendations from this narrowly focused study were, in general, sufficiently clear to preclude additional developmental studies.
- The NCTL testing procedure could be submitted to an appropriate American Society for Testing and Materials (ASTM) committee for potential adoption as a standard method. A similar testing method for geomembranes is being considered.

Impact of Results

- Removed a potential major obstacle to the cost-effective use of HDPE geogrids for inground reinforcement.
- Provided additional technical

justification for the currently used backfill specifications for HDPE soil reinforcement.

 Provided the first research results on the synergy between stress, aging, and construction damage.

Development of Protocols for Confined Extension/Creep Testing of Geosynthetics for Highway Applications (Report No. FHWA-RD-97-143)

Overview

The research was initiated to develop a testing protocol to characterize the confined stress-strain response of geosynthetic materials used as tension-carrying reinforcement for in-ground applications. Current testing methods for stress-strain properties are conducted in an unconfined mode, which does not mimic the actual field conditions and is believed to be, for some materials, overly conservative. The benefits of using confined stress-strain testing to improve characterization of design properties should allow considerable material savings in tensile load applications.

Major Conclusions

The research, which included development of a proposed testing protocol, concluded that:

 Soil confinement creates beneficial effects for the stressstrain response of geosynthetic materials, particularly for nonwoven geotextiles. Phase 2 focused on the modification of existing procedures, protocols, and techniques for determining thermo-oxidation (for PP and HDPE) and hydrolytic degradation (for PET) of commercial geosynthetics and the performance of limited preliminary experiments using the developed and/or modified techniques to assess potential degradation rates and required testing periods.

Phase 3 consisted of the implementation of a long-term systematic experimental program with sufficient exposure variables to permit the calculation of degradation rates over usage time under conditions consistent with end-use environments.

Major Conclusions, Phase 1 and Phase 2

The major aspect of Phase 1 and Phase 2 dealt with determining the applicability of available chemical and physical characterization methods and the development and/or modification of long-term testing protocols to determine strength losses attributable to oxidation and hydrolysis as a function of time. The following major conclusions were reached.

With respect to polymer characterization of geosynthetics:

 Oxidation Induction Time (OIT) measurements were found to be reasonably effective as a measure of oxidative stability, but did not provide a quantitative estimate of the concentration of multi-component antioxidant additives. Comparative OIT measurements between geosynthetics are of no value in assessing oxidative degradation resistance.

- Hindered amine light stabilizer (HALS)-type antioxidants cannot be monitored by standard OIT methods. The newer High-Pressure OIT should be investigated further in this regard.
- High-Performance Liquid Chromatography (HPLC) was found to be an ineffective method for routine monitoring of antioxidant content.
- Measurement of molecular weight (or intrinsic viscosity) and Carboxyl End Group (CEG) number are the key polymer tracking methods in degradation studies for PET geosynthetics.
- Scanning electron microscopy (SEM) is effective in visually examining surface morphology for evidence of oxidation typically circumferential cracking or hydrolysis—that is evidenced by fiber surface erosion.

With respect to laboratory incubation time/temperature and methods:

- Incubation with multiple temperatures (minimum of three) is necessary for determining degradation rates.
- Incubation temperatures for PP and PET geosynthetics should generally be less than the 80/C required for HDPE geosynthetics, resulting in an even longer incubation time.
- Oxidative incubations should be conducted in circulating air ovens, which provide a more uniform regime.
- Hydrolysis incubations should be conducted in aqueous media and in heated reactors in

which the solution is constantly stirred. Again, incubation in excess of 3 years is necessary to produce significant degradation at the lesser required temperatures.

Major Conclusions, Phase 3

- For PP and HDPE, the longterm incubation studies validated that the oxidative degradation process can be divided into main phases as predicted by the Basic Auto-Oxidation Scheme (BAS). During Phase 1-the induction period-the antioxidants are consumed with no appreciable tensile strength loss. In Phase 2, after the substantial consumption of the antioxidants, the oxidative degradation process progressively reduces the tensile strength.
- The length of the induction period, which is dependent on antioxidant levels and type, controls the useful life of the geosynthetic. The depletion of antioxidants can be monitored by OIT measurements.
- Unstabilized polyolefin products have relatively short useful lives.
- Modified Arrhenius modeling techniques have been developed to analyze laboratory oxidative incubation data and predict tensile strength degradation rates.
- Antioxidant depletion is also a function of the burial regime, specifically the oxygen concentration and the amount of transition metal present.
- Products such as most slit-film PP geosynthetics develop ini-

tial cracks during the manufacturing process. Oxidation studies for such materials cannot be conducted at elevated temperatures.

- Given the required degradation of incubation to obtain meaningful results, accelerated degradation testing methods using pressure and a full oxygen atmosphere to reduce incubation time should be developed further. The research program demonstrated the viability of such an approach.
- For PET, the long-term incubation studies validated that conventional Arrhenius modeling techniques can be used to analyze hydrolysis data and predict tensile strength degradation rates.
- Tensile strength degradation rates for PET are accelerated in pH environments greater than 9 and in acidic environments of less than 3.
- PET commercial geosynthetics produced with low molecular weight (low intrinsic viscosity) and/or high CEG will degrade at a faster rate. Typically, these are nonwoven products.
- Hydrolytic degradation for PET can be tracked by viscosity measurements.

Implementation of the Research Findings in Current Practice

• The practical effect of the research findings has been to quantify, for the first time, strength loss as a function of time and environment.

/

Rational test-based Reduction

Factors for Aging are now used to determine the allowable tensile strength of a geosynthetic in Federal Highway Administration (FHWA) practices and are being implemented worldwide.

- Background and recommendations were published in an FHWA Geotechnology Technical Note, "Degradation Reduction Factors for Geosynthetics," issued May 15, 1997.
- For the FHWA-recommended material specifications for geosynthetics used as reinforcements, QA/QC and minimum acceptable polymer characteristics have been updated with respect to desirable polymer characteristics. These requirements have been incorporated into the guideline specifications for MSE walls and reinforced soil (RS) slopes contained in Report No. FHWA-SA-96-071, Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines.

Further Actions Recommended

- The developed protocols for oxidative and hydrolytic testing should be submitted to ASTM for tentative adoption as standards.
- The polymer characterization methods, OIT, MI (Melt Flow Index), CEG, and viscosity require standardization or minor/major revision where ASTM methods are available. Industry should be advised/ encouraged to publish these polymer index properties as part of their Technical Information Sheets. The Geosynthetic Research Institute

(GRI), which has conducted some developmental work on these methods, should be encouraged to submit revised ASTM standards.

 Liaison activities with the European CEN TC189/WG5 Committee that is preparing standards and test methods for geosynthetics should be continued. These will be finalized for implementation in the next few years and are likely to have a worldwide impact. North American input is essential to protect U.S. producers from standards contrary to U.S. specification practices.

Long-Term Durability of Geosynthetics Based on Exhumed Samples From Construction Projects (Report No. FHWA-RD-00-157)

Overview

This study was initiated to develop a databank detailing the oxidative and/or hydrolytic performance based on retrieved geosynthetic materials from construction works. The databank included both mechanical and polymer characteristics to potentially serve both as a performance benchmark for the laboratory-based predictions previously developed and for future retrieval programs.

A total of 24 geosynthetic samples from 12 locations were exhumed and tested for this task. Industry laboratories working under the auspices of the Industrial Fabrics Association International (IFAI) (their trade association) were called on to